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stereo film, used for image capture, allowing for faster 
processing times and better image editing and acquisi-
tion [5, 6]. There are various subcategories within fundus 
imaging, such as stereo fundus, widefield fundus (WF), 
ultra-widefield fundus (UWF), fundus autofluorescence 
(FAF), color fundus (CF), standard fundus, and angio-
graphic applications [1].

Defining AI tasks in chorioretinal disease
AI is a powerful tool capable of learning a near univer-
sal set of tasks, but no single algorithm is universally 
successful. Algorithms are instead carefully designed to 
perform a specific task. AI in ophthalmology is most fre-
quently used to automate three important tasks: image 
segmentation, classification, and prediction.

Background
Artificial intelligence (AI) is reshaping ophthalmology, 
especially in fundus imaging, aiding in segmentation, 
classification, and prediction of chorioretinal diseases 
like diabetic retinopathy (DR) and age-related macular 
degeneration (AMD). Fundus imaging is the technique 
of creating a two-dimensional representation of the 
three-dimensional semi-transparent retinal tissues using 
reflected yield [1–4]. Digital technology has supplanted 
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Segmentation
In the field of image processing, image segmentation 
refers to the partitioning of an image into multiple seg-
ments defined by a set of pixels. In medical imaging, 
segmentation plays an important role in identifying and 
highlighting regions of interest [7]. Classification and 
prediction models frequently use parameters and fea-
tures obtained from analysis of regions of interest. As a 
result, segmentation is often performed as a first step in 
in the AI and image processing pipeline [8]. While this 
task could be performed using classic computer vision 
approaches such as tensor voting, AI-based learning 
techniques have shown great promise in improving accu-
racy and efficiency of segmentation.

In imaging of the chorioretinal space, segmentation 
plays a key role in delineating important structures, 
yielding biomarkers such as retinal thickness, intraretinal 
fluid volume, and choroidal thickness. In research, auto-
mated segmentation saves time and effort while improv-
ing accuracy. When dealing with large datasets, which 
are often required in DL tasks, automated segmentation 
is practically a necessity.

Classification
Classification is the task of assigning a category to a 
given input [9]. Classification is well-described prob-
lem not exclusive to AI. People classify objects regu-
larly: for example, separating groceries into different 
food groups such as fruits, vegetables, breads, and 
meats. These groups are referred to as classes, cat-
egories, labels, or groups in AI. In ophthalmology, 
classifying a fundus image as polypoidal choroidal 
vasculopathy or age-related macular degeneration is a 
classification task [10]. Classification problems can be 
very specific, such as differentiating between stages 
of proliferative diabetic retinopathy or broad such as 
determining whether a patient needs referral or not 
[11]. These questions are of significant interest to clini-
cians as they can directly impact decision making. As 

a result, classification forms the backbone of AI use in 
medicine and is paving the way for automated diagno-
sis [12].

Prediction
Prediction is closely related to classification, but outputs 
a value or outcome rather than a category. Tasks that 
evaluate future outcomes, such as the chance of fluid 
recurrence or response to treatment, fall under the cat-
egory of prediction. Models designed to solve prediction 
tasks may yield a continuous range of values: for example, 
the best-corrected visual acuity based on a set of clini-
cal factors and treatment [13]. Even traditional classifi-
cation models may be rethought as prediction models. 
Rather than discretely classifying AMD as intermedi-
ate or late stage, a prediction model may provide a con-
tinuous numeric value reflecting the severity of disease. 
Prediction models will serve as the foundation for auto-
mated assessment of disease progression and treatment 
outcomes.

AI in chorioretinal pathology through fundoscopy
Segmentation
Fundoscopy can visualize structures including retinal 
blood vessels, optic disc, optic cup, and macula [14]. 
Retinal blood vessel segmentation remains the key cho-
rioretinal segmentation tasking using AI, along with the 
identification of chorioretinal lesions like microaneu-
rysms, hemorrhages, and exudates [15]. However, there 
are relatively few articles regarding chorioretinal lesion 
segmentation using AI.

Segmentation of vessels
Retinal vessel segmentation is an important fundus task 
for the diagnosis and treatment of various ocular and car-
diovascular pathologies [16] (Fig. 1).

Large datasets, such as DRIVE, STARE, and CHASE_
DB1, have simplified vessel segmentation using machine 
learning (ML) and deep learning (DL) approaches, 

Fig. 1 Fundus vessel segmentation using a W-Net tested on a) DRIVE and b) LES-AV datasets. Reprinted with permission from Galdran et al. Galdran, A., 
Anjos, A., Dolz, J. et al. State-of-the-art retinal vessel segmentation with minimalistic models. Sci Rep 12, 6174 (2022) under Creative Commons Attribution 
4.0 International License (https://creativecommons.org/licenses/by/4.0/legalcode)
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allowing for easy comparisons against other methods 
that have been similarly validated (Table 1) [17].

To our knowledge, Liskowski and Krawiec published 
the first example of AI segmentation of blood vessels 
from fundus images, achieving great success with a CNN 
validated of multiple datasets, including DRIVE, STARE, 
and CHASE_DB1 datasets [18]. This work paved the way 
for a significant rise in AI retinal vessel segmentation 
articles from 2017 to 2022.

The methods most used for retinal blood vessel seg-
mentation include ML and DL techniques such as sup-
port vector machines (SVM), k-nearest neighbor, and 
U-net architecture [19–28]. Thin vessel problems are 
addressed by innovations such as SSANet and HHNet, 
which strike a balance between computing demands and 
accuracy [14, 29–35].

Segmentation of lesions
AI segmentation of lesions is an important, but less-
investigated realm of chorioretinal fundus segmen-
tation (Fig.  2). Four relevant studies were found 
(Table 2). Random forest, SVM, and CNN-based algo-
rithms have been employed in research to segment a 

variety of findings, including geographic atrophy, dru-
sen segmentation, macular edema, and retinal vein 
blockage [36–39].

Table 1 Commonly Used Public Fundus Datasets for AI Applications
Dataset Number of 

Images
Pathologies Link

Digital Retinal Images for 
Vessel Extraction (DRIVE)

40 7 https://drive.grand-challenge.org/

Structured Analysis of the 
Retina (STARE)

397 13 http://cecas.clemson.edu/~ahoover/stare/

Child Hearth Health Study 
in England (CHASE_DB1)

28 Healthy https://blogs.kingston.ac.uk/retinal/chasedb1/

High-Resolution Fundus 
Image Database (HRF)

45 DR, glaucoma https://www5.cs.fau.de/research/data/fundus-images/

IOSTAR Retinal Vessel 30 N/A http://www.retinacheck.org/download-iostar-retinal-vessel-segmentation-dataset
Standard Diabetic Retinop-
athy Database Calibration 
Level 0 (DIARETDB0)

130 DR http://www.it.lut.fi/project/imageret/diaretdb0/

Standard Diabetic Retinop-
athy Database Calibration 
Level 1 (DIARETDB1)

89 DR http://www.it.lut.fi/project/imageret/diaretdb1/index.html

Automated Retinal Image 
Analysis (ARIA)

143 AMD, DR http://www.damianjjfarnell.com/?page_id=276

Age-Related Eye Disease 
Study 1/2 (AREDS1/2)

> 134,500 AMD, cataract https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_
id=phs000001.v3.p1

Methods to Evaluate Seg-
mentation and Indexing 
Techniques in the Field of 
Retinal Ophthalmology 1 
(MESSIDOR1)

1,200 DR https://www.adcis.net/en/third-party/messidor/

Methods to Evaluate Seg-
mentation and Indexing 
Techniques in the Field of 
Retinal Ophthalmology 2 
(MESSIDOR2)

1,748 DR https://www.adcis.net/en/third-party/messidor2/

e-ophtha 463 DR https://www.adcis.net/en/third-party/e-ophtha/

Table 2 Lesion Segmentation with Fundus
Algorithm Number of 

Articles
Results* Groups

CNN 2 AUC: Chen 
et al., 
Hassan 
et al.

Acc: 0.94
Sens:
Spec:

ML/Multimodal** 2 AUC: Feeny 
et al., 
Khalid 
et al.

Acc: 0.98
Sens: 1.00
Spec: 0.97

*Average values across articles **ML algorithm(s) or combined use of ML and DL 
AUC, area under curve. Acc, accuracy. Sens, sensitivity. Spec, specificity
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http://cecas.clemson.edu/~ahoover/stare/
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http://www.it.lut.fi/project/imageret/diaretdb0/
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https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
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Utility of fundus segmentation
Fundus segmentation remains a key area of research 
for lesion diagnosis and biomarkers, even with ongoing 
advancements in algorithms for other imaging modali-
ties. Recent studies have shown new therapeutic uses. 
OTNet, a CNN method with an AUC of 0.806 that grades 
arteriosclerosis based on retinal vascular segmentation, 
was described by Bai et al. [40]. AI’s usefulness in surgi-
cal settings was demonstrated by Xu et al.‘s description of 

an enhanced few-shot learning framework for accurate 
retinal vascular localization during central serous chorio-
retinopathy (CSCR) laser surgery [41]. As segmentation 
technology develops, real-time data may facilitate clini-
cians in carrying out essential tasks.

Classification
AI classification of ocular pathologies from fundus 
images has focused on single and multiple pathologies. 
AMD and DR have received significant attention, with 
DL techniques prevailing.

Classification of a single pathology
Since the late 1990s, clinicians have been fascinated by 
automated classification of single diseases such as reti-
nal vascular tortuosity and microaneurysms [42–44]. 
Commonly used datasets for validating classification 
algorithms include ARIA, AREDS1/2 for AMD, and 
MESSIDOR, DIARETDB0/1 for DR. STARE has been 
utilized for classification methods, as well as segmenta-
tion validation.

Many AI classifications of fundus images have been 
designed to diagnose AMD automatically (Table  3). 
Mookiah et al. published two of the first automatic AMD 
classification approaches from fundus images using 
a mixed methods approach, including decision tree, 
k-nearest neighbor, probabilistic neural network, and 
SVM [45, 46]. Their work achieved accuracies ranging 

Table 3 AMD Classification with Fundus
Algorithm Number of 

Articles
Results* Groups

CNN 5 AUC: 0.95 Burlina et al., Chen et 
al. (a), Chen et al. (b), 
Keel et al., Matsuba 
et al.

Acc: 0.54
Sens: 0.98
Spec: 0.97

ML/Multimodal** 5 AUC: 0.93 Acharya et al., Govin-
daiah et al., Mookiah 
et al. (a), Mookiah et 
al. (b), Yoo et al.

Acc: 0.96
Sens: 0.90
Spec: 0.98

*Average values across articles **ML algorithm(s) or combined use of ML and DL 
AUC, area under curve. Acc, accuracy. Sens, sensitivity. Spec, specificity

Fig. 2 Automated segmentation of soft exudates (SE), hard exudates (EX), hemorrhage (HE), and microaneurysms (MA) using multiple U-Net architec-
tures. Reprinted with permission from Xu et al. Xu Y, Zhou Z, Li X, Zhang N, Zhang M, Wei P. FFU-Net: Feature Fusion U-Net for Lesion Segmentation of 
Diabetic Retinopathy. Biomed Res Int. 2021 Jan 2;2021:6644071 under Creative Commons Attribution License (https://creativecommons.org/licenses/
by/4.0/legalcode)
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from 90.19% to 97.78%, with later improvements achiev-
ing 100% accuracy via Locality Sensitive Discriminant 
Analysis.

CNNs like ResNet, Inception-ResNet-V2, and Deep-
SeeNet have achieved great accuracies in AMD clas-
sification, with AUCs above 0.970 [47–50]. Innovative 
techniques such as UWF-based CNN and multimodal 
frameworks improve AMD detection, resulting in 
impressive AUCs [51, 52]. 

DR has historically been a secondary emphasis of 
AI classification of a single pathology (Table  4). DL 
techniques, particularly, IDx-DR X2.1, result in FDA-
approved AI diagnostic systems, while Gayathri et al. 
use ML approaches to obtain high precision and recall 
[53–58].

Cao et al. published the first paper focusing on AI 
detection of microaneurysms, critical for early DR diag-
nosis with an AUC of 0.985 [59]. Yu et al. and Tang 

et al. classified neovascularization with 95.23% and 
99.48% accuracy, respectively [60, 61]. In DR, Sahlsten 
et al’s Inception-v3 model detected macular edema with 
an AUC of 0.987 [62]. Singh and Gorantla’s DMENet 
attained 96.12% accuracy in early macular edema identi-
fication [63].

In addition to AMD and DR, several other pathologies 
have been classified using AI on fundus photos (Table 5). 
For pathologic myopia (PM), Lu et al. and Rauf et al. 
developed CNN techniques that achieved similar AUCs 
of 0.979 and 0.9845, respectively [64, 65] Du et al. per-
formed a similar feature-based classification for PM and 
achieved a high overall detection rate of 92.08%, demon-
strating AI’s potential for identifying various PM lesions 
[66].

Zhen et al. identified CSCR using Inception-V3, 
achieving AUC 0.934 [67]. Brown et al. used two CNNs, 
Inception-v1 and U-Net, for diagnose of plus disease in 
retinopathy of prematurity, with a 100% sensitivity and 
94% specificity [68]. Cai et al. used Inception-v3 to auto-
matically classify sea fan neovascularization in sickle cell 
hemoglobinopathy patients, attaining an AUC of 0.988, 
sensitivity of 97.4%, and specific of 97.0% [69].

Classification of multiple pathologies
Since 2017, multi-pathology classification using ML and 
DL has gained popularity, with the goal of rapidly detect-
ing many diseases from a single image, which is critical 
for new patients. The first such study classified imagines 
into 10 retinal diseases using DL models like VGG-19, 
with VGG-19 transfer learning-random forest surpassing 
the others [70]. While a promising study on multiple dis-
ease classification, the authors acknowledged that their 
pilot study did not fully demonstrate the benefits of using 
DL for this task, owing to the limited sample size.

For the rest of this section, we will go over additional 
attempts at multiple disease classification utilizing a 
range of AI algorithms for many diseases (Table 6).

We found two algorithms for classification of AMD 
and DR from normal images. The first used multiple AI 
algorithms, including AdaBoost, c4.5, logistic regres-
sion, naive bayes, neural network, random forest, 
SVM [71]. The random forest classifier outperformed 
other methods with an AUC exceeding 0.995 and the 
authors contend that their approach is feasible even 
with a small image pool. González-Gonzalo et al. used 
RetCAD v.1.3.0 to attain AUC values of 95.1% for DR 
and 94.9% for AMD [72]. Studies also explored glau-
coma classification alongside AMD-DR detection and 
focused on distinguishing between AMD and polypoi-
dal choroidal vasculopathy (PCV), along with identi-
fying less frequent pathologies and myopic conditions 
[73–77]. CNN-based approaches have been suggested 
for detecting significant findings in retinal images and 

Table 4 DR Classification with Fundus
Algorithm Number of 

Articles
Results* Groups

CNN 8 AUC: 0.97 Abràmoff et al. 
(a), Abràmoff et 
al. (b), Gargeya et 
al., Gulshan et al., 
Singh and Gorantla, 
Tang et al., Ting et 
al., Zhang et al.

Acc: 0.98
Sens: 0.91
Spec: 0.93

ML/Multimodal** 5 AUC: 0.95 Cao et al., Gayathri 
et al., Long et al., Yu 
et al., Zhang et al.

Acc: 0.95
Sens: 0.90
Spec: 0.96

*Average values across articles **ML algorithm(s) or combined use of ML and DL 
AUC, area under curve. Acc, accuracy. Sens, sensitivity. Spec, specificity

Table 5 Classification of Non-AMD, Non-DR Pathologies with 
Fundus
Algorithm Number of 

Articles
Results* Groups

CNN 7 AUC: 0.97 Brown et al., 
Cai et al., Du et 
al., Lu et al., Lu 
et al., Rauf et 
al., Zhen et al.

Acc: 0.97
Sens: 0.82
Spec: 0.96

ML/Multimodal** 0
*Average values across articles **ML algorithm(s) or combined use of ML and DL 
AUC, area under curve. Acc, accuracy. Sens, sensitivity. Spec, specificity
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classifying nine posterior segment pathologies [78–83] 
Cen et al. developed a CNN capable of detecting 39 
common retinal diseases, showcasing AI’s potential in 
ophthalmologic practices [84] (Fig. 3).

Classification of stages in a pathology
AI staging of chorioretinal pathologies has focused on 
AMD, DR, and a few additional pathologies (Table  7). 
Burlina et al. pioneered AMD grading with DL models 
like AlexNet and OverFeat, achieving encouraging results 
but falling short of human grading [85–87].

Grassmann et al. used six CNNs (AlexNet, GoogLeNet, 
VGG, Inception-v3, ResNet, and Inception-ResNet-v2) 
to grade AMD with 63.3% accuracy [88]. DeepSeeNet 
outperformed physicians in identifying large drusen and 
pigmentary abnormalities in AMD, but was inferior in 
detecting late AMD (stage 5) [89]. VGG-16 identified 
wet vs. dry AMD with higher accuracy than first-year 
residents [90]. K-means cluster analysis identified pachy-
choroid features associated with improved visual acuity 
in AMD patients [91]. Despite their variable accuracy, AI 
algorithms demonstrated potential in a variety of classi-
fication systems. SVM achieved 98.33% accuracy in DR 
staging by analyzing fundus and OCT images [92]. CNNs 
achieved 88–89% accuracy in classifying DR severity, 
addressing issues like poor image quality and overfitting 
[93] (Fig. 4).

CNN512 and YOLOv3 achieved 89% accuracy in DR 
staging [11]. AI was also employed in assessing myo-
pia risk, hypertensive retinopathy, and retinopathy of 

prematurity with high accuracies exceeding 95% in vari-
ous modules and datasets, demonstrating AI’s potential 
in grading diverse eye pathologies [94–96].

Prediction
In fundoscopy, prediction is used to predict future occur-
rences, such as the disease course, which is important 
for treatment planning and follow-up. The goal of five 
AI prediction experiments using fundus pictures was 
to forecast the progression of DR or AMD (Table 8). AI 
prediction in fundoscopy has demonstrated promise in 
improving ocular prognostics, despite being a relatively 
new subject.

Arcadu et al. and Hua et al. employed DL to predict 
DR risk, with AUCs of 0.79 and 88.8%, respectively 
[97, 98]. The first example of AMD development was 
published in 2020 by Bhuiyan et al., who distinguished 
between early/none and intermediate/late AMD with 
99.2% accuracy [99] (Fig.  5). Their two-year predic-
tion model exhibited an overall accuracy of 86.36% for 
late-stage AMD progression. While this model per-
formed well in predicting AMD in general, it was not 
as successful in differentiating between the wet and dry 
subtypes.

Peng et al. and Govindaiah et al. developed AI 
approaches for accurately predicting late AMD, high-
lighting AI’s potential to improve prognostics for eye dis-
orders [100, 101].

Discussion
AI is transforming ophthalmology, particularly in fore-
casting disease progression like AMD and CSCR and 
treatment outcomes [102–106]. Despite challenges 
such as inconsistent therapy response, AI can enhance 
results and save costs. Enhancing OCT picture quality 
by denoising algorithms and image augmentation aids in 
diagnosis and therapy planning.

New developments in AI, such vision transform-
ers (ViT), are broadening the range of uses for image 
processing. Convulsion layers have shown to be a par-
ticularly successful way for ViTs to incorporate image 
patches; in 2021, ViT-G beat previous models on 
the ImageNet dataset [107]. However, ViT networks 
pose difficulties for applications such as OCTs, as 
they demand large datasets and substantial process-
ing resources [108]. Generative adversarial networks 
(GAN) are another type of deep learning technol-
ogy that is becoming more and more popular. GAN 
is capable of image synthesis, superresolution, and 
picture-to-image translation [109, 110]. Deep convolu-
tional GANs, or DCGANs, train the operators within 
CNNs, whereas conditional GANs (C-GANs) supply 
extra data to improve created data representations 
[111–113]. Zhang et al. highlighted the value of GANs 

Table 6 Classification of Multiple Pathologies with Fundus
Algorithm Number of 

Articles
Results* Groups

CNN 10 AUC: 0.97 Cen et al., Choi 
et al., Chou et al., 
González-Gonzalo 
et al., Keel et al., Kim 
et al., Sahlsten et al., 
Son et al., Xu et al., 
Yu-Chuan Kang et al.

Acc: 0.724
Sens: 0.89
Spec: 0.94

ML/Multimodal** 6 AUC: 0.89 Antaki et al., Bala-
subramanian and 
Ananthamoorthy, 
Koh et al., Porwal et 
al., Standardization 
of Uveitis Nomencla-
ture (SUN) Working 
Group, Tan et al.

Acc: 0.95
Sens: 0.88
Spec: 0.93

*Average values across articles **ML algorithm(s) or combined use of ML and DL 
AUC, area under curve. Acc, accuracy. Sens, sensitivity. Spec, specificity
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in chorioretinal research by using them to remove reti-
nal shadows and improve choroid area imaging [114].

AI in fundoscopy bridges access barriers to expensive 
imaging modalities because fundus images anticipate 
OCT biomarkers and offer angiographic images [115]. 
Although the creation of AI is made easier by automated 

machine learning (AutoML), high-quality datasets are 
still hard to come by. Federated learning and cooperative 
efforts may be able to solve this problem, increasing the 
application of AI in healthcare.

While many of AI’s applications in ophthalmology 
have been image-based to date, the rapid development 

Fig. 3 Representative heatmap and feature detection for classification of multiple retinal pathologies. Reprinted with permission from Cen et al. Cen, LP., 
Ji, J., Lin, JW. et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun 12, 4828 
(2021) under Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/legalcode)
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and acceptance of large language models (LLMs), 
including, most famously, ChatGPT (OpenAI, San 
Francisco, USA), heralds an approaching era in which 
text-based generative algorithms are ubiquitous 
in clinical and research contexts [116]. LLMs offer 
the potential to guide clinical decision making for 

physicians, help patients self-triage and self-diagnose, 
generate novel research ideas for clinician-scientists, 
and assist in training the next generation of ophthal-
mologists, among other powerful benefits [117]. It 
should be noted that, like many AI applications across 
medicine and society, LLMs posit important ethical 
and implementation challenges alongside their poten-
tial to optimize clinical decision making and improve 
patient experiences. These include privacy concerns, 
especially for models trained using electronic medical 
record data, false/misleading responses, lack of acces-
sible data to train a model specifically designed for 
ophthalmologic purposes, and other ethical concerns 
[118]. In other words, while LLMs will almost certainly 
find some role in clinical and investigative ophthalmol-
ogy, and in fact have already seen preliminary stud-
ies explored, their use need be evaluated carefully to 
ensure continued quality and integrity in ophthalmic 
care [119].

Conclusions
Fundoscopy, despite its age and limitations, remains 
a valuable tool to image the posterior segment. While 
many AI applications in fundoscopy are still nascent, it 
is only a matter of time before these algorithms become 
commonplace in clinical and research settings. With 
innovation, acceptance, and understanding from modern 
day clinicians, our ability to treat and diagnose chorioret-
inal pathology is set to continue to improve in the golden 
age of AI.

Table 7 Classification of Stages in a pathology with fundus
Algorithm Number of 

Articles
Results* Groups

CNN 8 AUC: 0.96 Alyoubi et al., Bur-
lina et al. (a), Burlina 
et al. (b), Campbell 
et al., Heo et al., 
Peng et al., Shaban 
et al., Wan et al.

Acc: 0.82
Sens: 0.88
Spec: 0.95

ML/Multimodal** 4 AUC: Akbar et al., Grass-
man et al., Hosoda 
et al., Murugeswari 
and Sukanesh

Acc: 0.93
Sens:
Spec:

*Average values across articles **ML algorithm(s) or combined use of ML and DL 
AUC, area under curve. Acc, accuracy. Sens, sensitivity. Spec, specificity

Table 8 Prediction with fundus
Algorithm Number of 

Articles
Results* Groups

CNN 3 AUC: 0.84 Arcadu et 
al., Hua et al., 
Peng et al.

Acc: 0.89
Sens: 0.97
Spec: 0.82

ML/Multimodal** 2 AUC: Bhuiyan et 
al., Govin-
daiah et al.

Acc: 0.81
Sens: 0.83
Spec: 0.80

*Average values across articles **ML algorithm(s) or combined use of ML and DL 
AUC, area under curve. Acc, accuracy. Sens, sensitivity. Spec, specificity

Fig. 4 Misclassified images of DR in multiple stages due to poor light-
ing and contrast. Reprinted with permission from Shaban et al. Shaban M, 
Ogur Z, Mahmoud A, Switala A, Shalaby A, Abu Khalifeh H, Ghazal M, Frai-
wan L, Giridharan G, Sandhu H, El-Baz AS. A convolutional neural network 
for the screening and staging of diabetic retinopathy. PLoS One. 2020 Jun 
22;15 [6]:e0233514 under Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/legalcode)
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