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Abstract 

Background: Artificial intelligence and automated technology were first reported more than 70 years ago and now-
adays provide unprecedented diagnostic accuracy, screening capacity, risk stratification, and workflow optimization.

Diabetic retinopathy is an important cause of preventable blindness worldwide, and artificial intelligence technology 
provides precocious diagnosis, monitoring, and guide treatment. High-quality exams are fundamental in supervised 
artificial intelligence algorithms, but the lack of ground truth standards in retinal exams datasets is a problem.

Main body: In this article, ETDRS, NHS, ICDR, SDGS diabetic retinopathy grading, and manual annotation are 
described and compared in publicly available datasets. The various DR labeling systems generate a fundamental prob-
lem for AI datasets. Possible solutions are standardization of DR classification and direct retinal-finding identifications.

Conclusion: Reliable labeling methods also need to be considered in datasets with more trustworthy labeling.
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Background
Computers executing automated functions were first 
described in 1950, with the first publication in 1943. 
Since then, Artificial Intelligence capacity has evolved 
into deep learning and neural networks, technologies 
that could simulate interconnected neurons and provide 
outputs after multiple information layers [1, 2].

Automated technology provides unprecedented diag-
nostic accuracy, screening capacity, risk stratification, 
and workflow optimization with accuracy equivalent to 
healthcare professionals [3] and more cost-effective dis-
eases screening [4].

In Machine Learning, supervised learning is the most 
applied method in disease screening and classification 

algorithms, corroborating the importance of data labe-
ling quality [5, 6].

Diabetic retinopathy (DR) is the leading cause of pre-
ventable blindness in working-age adults worldwide 
[7, 8], responsible for more than 24,000 annual cases of 
blindness [9] and the main focus in Ophthalmological AI 
screening algorithms [10]. There is an increased blind-
ness risk in patients with chronic diabetes mellitus, espe-
cially those with poor clinical control [11].

Telemedicine and automated screening programs could 
diagnose, monitor, and guide treatment. Precocious diag-
nosis and therapy could avoid severe vision loss in 90% 
of cases, but only 60% of diabetic patients have recom-
mended yearly examinations [12].

There are many Diabetic Retinopathy classifications 
applied in distinct countries and screening programs, 
with the International Council of Ophthalmology Dia-
betic Retinopathy (ICDR) classification as the most 
applied in open-access ophthalmological datasets [13].
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High-quality retinal exams are fundamental in the 
development of AI algorithms, but also standards in labe-
ling protocols, classifications, and quality control. This 
article describes and compares the most commonly dia-
betic retinopathy classifications, referencing criteria, and 
their applications in datasets.

Main text
This study compared the most often-applied DR clas-
sification scales: Scottish Diabetic Retinopathy Grading 
[14], Early Treatment Diabetic Retinopathy Grading [15], 
International Clinic Diabetic Retinopathy [16], National 
Health Service Diabetic Retinopathy Classification grad-
ing [17], Modified Davis Retinopathy staging [18], and 
direct findings identification.

The Early Treatment Diabetic Retinopathy Study
At an international consortium of ophthalmologists 
at Airlie House in 1968, internists and neurosurgeons 
standardized a diabetic retinopathy classification applied 
in the landmark Early Treatment Diabetic Retinopathy 
Study [15], designed to generate a more precise staging 
for DR and macular edema. The study screened for the 
presence of microaneurysms (MA), retinal hemorrhages, 
cotton-wool spots, intraretinal microvascular abnormali-
ties (IRMA), venous beading, and neovessels in 35-mm 
photographs. The consortium provided standard photos 
of microaneurysms, hemorrhages, and neovessels.

The ETDRS defined microaneurysms as red spots of 
less than 125 microns in its longest dimension with well-
delimited margins and defined hemorrhage as a red spot 
with irregular margins with more than 125 microns. 
Punctate lesions, blots, linear hemorrhages, and microa-
neurysms were classified as red spots when they were not 
distinguished in ETDRS charts [19].

ETDRS defined clinically significant macular edema 
as retinal edema seen in retinal stereo photographs at or 
within 500 microns of the center of the macula or hard 
exudates at or within 500 microns of the foveal center 
and retina thickening or retinal thickening larger than 
one disc diameter area within one disc diameter of the 
center of the macula. In 2006, Rudnisky compared modi-
fied ETDRS protocols with one or two fields and 16:1 
JPEG images and showed good reproducibility compared 
to standard ETDRS stereoscopic photos [20]. (Table 1).

National Health Service diabetic retinopathy classification
The National Health Service (NHS) was a diabetic retin-
opathy classification system applied In England, Scot-
land, Wales, and Northern Ireland between 2002 and 
2007. It applied an ETDRS modified diabetic retinopathy 
scale classified in four severity stages [17, 21]. This pro-
gram evaluated and classified DR using macula-centered 

and optic disc-centered images [22]. The NHS screening 
program provided guidelines for grading and lesions clas-
sifications [23].

This DR classification considered macular exudates 
sign of macular edema because the images were non-ste-
reoscopic; it also added a photocoagulation classification 
(Table 1).

International Clinic Diabetic Retinopathy
The International Clinic Diabetic Retinopathy (ICDR) 
classification was published in 2003 after a consensus of 
31 retina specialists, endocrinologists, and epidemiolo-
gists from 16 countries and sponsored by the American 
Academy of Ophthalmology [16]. The ICDR classified DR 
on a five-stage severity scale and classified diabetic macu-
lar edema as apparently absent or present. The classifi-
cation was created to simplify the ETDR and Wisconsin 
Epidemiologic Study scale and make it more applicable in 
daily practice studies [16].

ICDR is applied in the EYEPACS dataset [24], Asian 
Pacific Tele-Ophthalmology Society dataset [25], Indian 
Diabetic Retinopathy Image Dataset [26], Messidor 1 and 
2 datasets [27] (Table 1).

The Scottish Diabetic Retinopathy Grading Scheme, 2004
In 2003, the National Scotland Eye Screening for Dia-
betic Retinopathy Program was created [28]. This grad-
ing system classified DR in all patients aged 12 years and 
older. Retinal digital photos were analyzed, and the re-
screening period or ophthalmologist referral was estab-
lished. The Scottish diabetic retinopathy grade (SDRG) 
is divided into four DR severities in a single fovea-cen-
tered image with at least two disc diameters temporal 
to the fovea and one disc diameter nasal to the disc [14] 
(Table 1).

Modified Davis retinopathy staging
The ICDR score simplifies DR in three stages: simple 
diabetic retinopathy, pre-proliferative retinopathy, and 
proliferative retinopathy using 45-degree photographs 
of the posterior pole applied in the Jichi DR dataset [18] 
(Table 1).

Direct findings identification
In AI datasets, findings such as microaneurysms, hemor-
rhages, hard exudates, and retinal detachment could be 
identified through direct identification. Applications such 
as SuperAnnotate [29], VGG Image annotation Tool [30], 
Supervise.ly [31], Labelbox [32], and Visual Object Tag-
ging Tool [33] are available as labeling tools.

In ODIR [34], DIARETDB 0 and 1 [35], DR 1 and 2 
[36], E-Ophtha [37], and HEI-MED [38], retinal findings 
are manually annotated (Fig. 1).
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Referencing criteria comparison
The NHS, ICDR, and SDRGS establish referencing cri-
teria. In NHS and SDRGS, the criteria are similar, with 
multiple retinal hemorrhages, intraretinal microvascular 
anomalies, or venous beading. In the ICDR, should be 
referenced patients with more than just microaneurysm, 
a criterion with greater sensitivity [14, 16, 17].

Considering macular edema, the NHS, SDRGS, and 
ICDR recommend referencing patients with exudates or 
apparent thickening in the macular area. The NHS rec-
ommends exudates distance within half-disc diameter 
from the fovea and ICDR and SDRGS within one disc 
diameter [14, 16, 17] (Table 1).

Conclusions
Artificial intelligence and automated technology were 
first reported more than 70 years ago and nowadays pro-
vide unprecedented diagnostic accuracy, screening, risk 
stratification, and workflow optimization [3].

Reliable datasets are fundamental in supervised 
Machine Learning development; however, labeling pro-
cess standardization, quality control, and homogeniza-
tion remain challenging [39].

In diabetic retinopathy, there are distinct DR clas-
sifications, with different numbers of DR gradings and 
methods such as the Scottish Diabetic Retinopathy Grad-
ing [14], Early Treatment Diabetic Retinopathy Grading 
[15], ICDR [16], NHS Diabetic Retinopathy Classifica-
tion grading [17], and Modified Davis Retinopathy stag-
ing [18] that are described in this review. Still, direct 
retinal findings annotation is valuable in neural networks 
training.

The Scottish Diabetic Retinopathy Grading is a valuable 
classification through retinal photographs due to a single 
macular centered retinal evaluation and is more sensi-
tive for grading moderate and severe cases than ICDR 
classification.

When choosing the classification method applied in 
the dataset, the image field of view and the number of 
images must be considered. Classical ETDRS and ICDR 
classifications tend to underestimate DR classification in 
retinal photographic images due to limited image view 
areas compared to retinal fundus examinations.

The various DR labeling systems generate a funda-
mental problem for AI datasets, and it is fundamental 
to standardize DR grading in datasets to develop algo-
rithms and ensure proper patient referral. Reliable labe-
ling methods also need to be considered in datasets with 
more trustworthy labeling.
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