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Early detection of age related macular 
degeneration: current status
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Abstract 

Early diagnosis and treatment of choroidal neovascularization (CNV), a main cause of severe vision loss in age related 
macular degeneration (AMD), is crucial in order to preserve vision and the quality of life of patients. This review sum‑
marizes current literature on the subject of early detection of CNV, both in the clinic setting and mainly in the patient’s 
home. New technologies are evolving to allow for earlier detection and thus vision preservation in AMD patients.
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Introduction
Age-related macular degeneration (AMD) is the lead-
ing cause of blindness in persons older than 50 years in 
the United States and worldwide, accounting for 8.7  % 
of all legal blindness worldwide [1–4]. A main cause of 
severe vision loss due to the disease is the development 
of choroidal neovascularization (CNV), leading to the 
exudative or “wet” form of AMD. In patients present-
ing with CNV, treatment with intravitreal injections of 
anti-vascular endothelial growth factor (VEGF) agents 
may improve visual acuity (VA) by three lines or more 
in 30–40 % of patients and may prevent deterioration of 
visual acuity [5–10].

However, since the rise of different anti-VEGF agents, it 
has also become clear that early diagnosis and treatment 
is crucial for these outcomes, a fact which was demon-
strated in many studies [5, 11–13]. For example, sub-
analyses of the MARINA and ANCHOR studies revealed 
that the more early or immature a CNV lesion is, the 
better final VA outcome is expected following antiangio-
genic treatment [6, 14]. Visual acuity at the time of ini-
tiation of anti-VEGF treatment was demonstrated to be 
the best predictor of VA at 1 and 2 years following treat-
ment [5, 14]. It was shown that treatment of CNV within 

1  month of detecting visual symptoms is more likely to 
result in visual acuity gain than treatment after this time-
frame [13]. This may also apply to detection of advancing 
disease in the fellow eye. Recently published data from 
the Beaver Dam Eye Study showed that for eyes free of 
AMD in participants who were 50 years of age, the inci-
dence of any AMD in that eye by 55  years of age was 
higher if AMD was present in the fellow eye (7 vs 2 %). A 
similar effect was seen in participants who were 70 years 
of age (21 vs 6 %) and in 90 year old participants (24 vs 
10  %). Progression of the disease was more common as 
AMD severity progressed in the fellow eye [15].

It is therefore crucial that development of a new CNV 
be detected as early as possible, preferably before the 
development of a full-blown lesion which has already led 
to loss of letters, lines, and quality of life.

Review
Barriers to early detection of CNV
While it is clear that early detection of CNV in AMD 
patients is paramount for preservation of long term 
visual acuity, it is not always the reality outside of con-
trolled studies. In a retrospective study of patients receiv-
ing the anti-VEGF agent ranibizumab, Rauch et al. found 
a mean time between initial symptoms and treatment of 
59 ±  62  days [13]. In a different retrospective study by 
Canan et al., 73 % of patients had a symptom duration of 
53.1 ± 14.2 days before commencing treatment [16].
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During this lost time, the lesion keeps growing. CNV 
growth is typically accompanied by vision loss, with the 
majority of patients diagnosed with poor vision ranging 
from 20/63 [9, 17] in large studies to 20/138 in real world 
data [18]. Average lesion size of patients in large studies 
has an area of about 4000 microns and it was calculated 
that even the earliest enrolled patients in these studies 
had had neovascular AMD for 7.7 months prior to entry 
into the clinical trial [19].

The reasons for treatment delay are varied. First, pro-
gression of CNV can be rapid, with immature vessels 
reaching a maturation state within 10–14 days, [20] and 
patients may remain asymptomatic during this growth. 
Due to brain compensation mechanisms, the patient may 
not notice any change in vision in the early stages of the 
disease, [21] especially if the lesion develops outside the 
fovea. Second, public awareness to the disease is lacking. 
According to a large-scale survey published in 2003, only 
3 of 10 adults in Western countries had any knowledge 
of AMD, and only 2 % knew that this disease is the lead-
ing cause of legal blindness [22]. This lack of knowledge, 
unfortunately, has not changed much since then, as evi-
denced by a recent study that found that 84 % of a sample 
of individuals with AMD in the United States were una-
ware of their disease [23].

Current options for early detection of CNV
The current paradigm for early detection necessitates 
frequent monitoring, imaging [with optical coherence 
tomography (OCT) or fluorescein angiography (FA)] 
and clinical examination at the clinic. However, as was 
demonstrated above, the timeframe from appearance 
of symptoms to diagnosis and treatment is not ideal. 
Accordingly, several methods have been proposed for 
early detection of CNV, which may be unnecessarily 
delayed. These methods are described henceforth and are 
summarized in Table 1.

OCT
The development of OCT has changed the management 
of AMD patients. It provides detailed cross-sectional 
images of the retina, complementing data from fun-
duscopic examination and FA, as was previously dem-
onstrated by Coscas et  al. [24]. Once diagnosed, OCT 
serves as an excellent tool for follow-up of CNV activity 
and its responsiveness to treatment.

Several studies appear in the literature on the subject 
of early detection of CNV using OCT. In a prospective, 
observational, nonrandomized pilot study by Padnick-
Silver et  al. [25]. Seventy-nine patients with neovascu-
lar AMD in one eye and non-neovascular AMD in the 
other were followed up every 3  months for 2  years. On 

each examination visual acuity and biomicroscopy were 
examined followed by Stratus OCT. If the OCT image 
raised suspicion, patients were reexamined 4–6  weeks 
later and/or FA was performed. Fifteen (19 %) developed 
CNV, of which 13 had disease progression identified on 
OCT before examination and/or FA showed changes.

De Sisternes et  al. [26] developed a statistical model 
based on quantitative characteristics of drusen, includ-
ing area, volume, height, and reflectivity on OCT that 
estimates the likelihood of conversion from early and 
intermediate AMD to advanced exudative AMD. Farsiu 
et al. [27] also used OCT biomarkers, in order to distin-
guish AMD from control eyes with a high accuracy. They 
delineated the retinal pigment epithelium (RPE) and RPE 
drusen complex (RPEDC, or axial distance from the apex 
of the drusen and RPE layer to Bruch’s membrane) and 
total retina (TR, or axial distance between the inner lim-
iting and Bruch’s membrane) boundaries in OCT stud-
ies of 269 subjects with AMD from the Age-Related Eye 
Disease Study 2 (AREDS2) Ancillary SD-OCT study, and 
115 control subjects without AMD. They showed that 
analyzing the topographic distribution of these disease 
indicators may serve as efficient biometrics to distinguish 
AMD from normal eyes.

Since the resolution of the Stratus, or time-domain 
OCT (TD-OCT) is lower than modern spectral domain 
OCT (SD-OCT) it is expected that newer machines 
would show even greater success in early detection of 
CNV. Indeed, in a review by the National Institute for 
Health Research (NHS), [28] seven studies reporting the 
accuracy of OCT in detecting active neovascular AMD 
were analyzed, five of which reported TD-OCT, [29–33] 
one reported SD-OCT, [34] and one reported both TD-
OCT and SC-OCT [35]. For all OCT studies, the pooled 
sensitivity and specificity (95 % CI) was 85 % (72–93 %) 
and 48  % (30–67  %), respectively. For TD-OCT, the 
pooled sensitivity and specificity was 70  % (56–80  %) 
and 65  % (48–79  %), respectively. Reported sensitivities 
for the two SD-OCT studies were 94 and 90 %, and spe-
cificities were 27 and 47 %, suggesting that SD-OCT has 
higher sensitivity than TD-OCT but lower specificity.

OCT is currently the mainstay for CNV detection and 
AMD progression. Advantages of this method include the 
high sensitivity in detection of active disease, especially 
with newer, higher resolution, machines; the wide avail-
ability of OCT machines in retina clinics; and the rela-
tive speed and ease of use of the machine. Yet OCT has 
a disadvantage in the necessity of patients to attend the 
clinic in order to perform this exam. Even with the high 
sensitivity values reported, the time between appearance 
of CNV and its detection and treatment is suboptimal, as 
demonstrated previously.
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Thus several ambulatory methods have been developed 
in the goal of detecting the lesion as early as possible, 
even at the patient’s home. These are described below.

Amsler grid
Amsler charts were first described in 1947 by Marc 
Amsler. [36] When used at a distance of 28–30 cm they 
evaluate the 20° of the visual field centered on fixation, 
[37] and they consist of a 10 × 10-cm square with a grid 
containing 400 single squares. The subdividing vertical 
and horizontal lines are 0.5 cm apart. Every single square 
represents an angle of 1°. A central spot for fixation is 
located in the center of the grid (Fig. 1). When the patient 
fixates on the central dot from a distance of approxi-
mately 30 cm, they are asked to report distortions, blurri-
ness, or missing lines on the grid.

According to Amsler’s original work, [38–40] in 
patients with maculopathies subjective symptoms often 
precede objective signs, making the grid suitable for 
detection of macular disease at an early stage.

Amsler grids have the advantage of being readily avail-
able. Nowadays patients can make use of smartphone 
applications which show Amsler grids, making them 
even more accessible.

An increasing number of ophthalmologists, however, 
agree that the Amsler grid is not a sufficiently reliable 
tool with variable sensitivity for monitoring vision [41–
43]. In a recent systematic review of 12 studies conducted 
by Faes et al. [44], it was found that the sensitivity of the 

test ranged from 0.34 to 1.0 and its specificity ranged 
from 0.85 to 1.0. Perhaps the most compelling reason for 
this test’s variable sensitivity is the remarkable capability 
of the brain to complete missing or out-of-line details, 
which could cause slight distortions to pass undetected 
[45]. Additionally, Amsler grids do not provide pre-
cise, quantifiable measures of visual field defects, and 
are therefore not useful as monitoring tools for disease 
progression.

Near visual acuity
Research suggests that a reduction in reading rate is 
often noticeable among older patients prior to significant 
vision loss [46–49]. Indeed, one of the first signs or symp-
toms of visual loss in the early, non-NV stages of AMD, 
may be a reduction in reading rate, and near VA is a good 
predictor of reading rate [50]. As AMD progresses both 
near VA and reading rate reduce. It is thought that if near 
VA is a great deal worse than distance VA, a scotoma is 
impending near vision [48]. Therefore, some ophthal-
mologists provide their patients with a near-vision chart 
for home monitoring, in lieu of an Amsler chart or other 
CNV screening methods. This method, while having the 
advantage of being easily accessible, has not been proven 
in the literature.

Preferential hyperacuity perimetry
Due to the shortcomings of the Amsler grid preferential 
hyperacuity perimetry (PHP) was developed [51]. Hyper-
acuity (also termed vernier acuity) is defined as the ability 
to perceive a difference in the relative spatial localiza-
tion of 2 or more visual stimuli. It may detect miniscule 
changes in the relative localization of objects in space, 
within the central 14° of the visual field. RPE elevation 
and neurosensory retinal elevation, both possible occur-
rences in advanced AMD, causes a shift in the regular 
position of photoreceptors. It is hypothesized that such 
as shift causes an object to be perceived at a location dif-
ferent from its true location in space. This perceived shift, 
which may be the anatomical explanation for metamor-
phopsia, is recorded by PHP [52].

By presenting stimuli with artificial distortions of dif-
ferent amplitudes, a probabilistic estimation can be 
inferred: The collection of erroneous responses at the end 
of the test is used to identify, locate and quantify the size 
of perceived distortions. This quantification enables to 
distinguish between normal or quasi-normal distortions 
(e.g., as can occur because of large drusen) and larger dis-
tortions, more typical of CNV lesion [52]. The first gen-
eration of devices using PHP technology was designed 
for supervised use in a clinical setting. An algorithm 
was developed that distinguished between intermediate 
AMD and newly diagnosed CNV patients. Prospective 

Fig. 1 Amsler grid: first described in 1947 by Marc Amsler, this chart 
consists of a 10 cm square with a grid and a central spot for fixation
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multicenter studies done in 2003–2005 showed that this 
algorithm was able to discriminate between these two 
disease stages [52, 53]. However, there are limits to the 
use of PHP in the clinic setting, [54] including depend-
ence on qualified clinical personnel, which restricts the 
frequency of visits per patient.

This has led to the development of a home device, 
after several modifications to the original device, 
including reduction in its physical size; enclosure of 
the screen viewer in a closed hood in order to control 
distance from the display, ambient light conditions, 
and occlusion of the non-tested eye; and addition of 
infrared sensors to ensure correct positioning of the 
head [55]. This device was evaluated in a phase III, 
unmasked, randomized clinical trial: the HOME (Home 
Monitoring of the Eye) study [56]. The study compared 
the use of the device, named ForeseeHome (Notal 
Vision, Israel) (Fig.  2), plus standard care, compared 
with standard care alone, for eyes at high risk of pro-
gression to CNV. Study participants at risk for devel-
oping CNV had either bilateral large drusen or large 
drusen in one eye with advanced AMD in the fellow 
eye. Forty-four AREDS2 clinical centers participated in 
the study. Standard care included investigator-specific 
instructions for self-monitoring at home (including 
aids such as an Amsler grid).

Of the 1970 participants in the study, 763 were rand-
omized to device monitoring and 757 to standard care. 
They were followed for a mean of 1.4  years. Fifty-one 
patients in the device arm and 31 in the standard care 
arm progressed to CNV, with a smaller decline in VA 

from baseline to CNV detection in the device group 
[(median −4 (−11.0, −1.0) letters] compared with the 
standard care group [median −9 (−14.0, −4.0) letters] 
(p  =  0.021). As a secondary visual acuity outcome, a 
higher percentage of eyes maintained 20/40 or better 
visual acuity at the time of CNV diagnosis and initiation 
of treatment in the device arm (87  %) compared with 
the standard care arm (62  %) (p =  0.014). Among par-
ticipants who used the device at the recommended fre-
quency, the proportion of eyes that maintained BCVA of 
20/40 or better was 94 %.

These home-based devices have the advantage of allow-
ing daily use without leaving the home, being simple to 
use, and sending information to a monitoring center. 
A possible disadvantage to the device is its high price, 
although reimbursement options are available.

Shape‑discrimination hyperacuity
A different form of hyperacuity measurement involves 
the discrimination of shapes. Using radial frequency 
(RF) patterns, Wilkinon et  al. [57] demonstrated that 
humans have high sensitivity to sinusoidal deforma-
tion from circularity. The threshold for detecting radial 
deformation is a hyperacuity (<10  arcsec). Wang et  al. 
[58] demonstrated that patients with early AMD had 
significant deficits in performing shape-discrimination 
tasks when compared with normal older subjects, with-
out significant correlation with loss of VA. This disso-
ciation between shape discrimination and VA suggested 
that this test may provide distinguishable informa-
tion about the integrity of the photoreceptor mosaic in 
AMD.

A smartphone application for testing shape-discrim-
ination hyperacuity (SDH) was recently introduced 
(MyVisionTrack, Vital Art and Science, USA). Wang et al. 
[59] evaluated 100 subjects, of which 37 had AMD, with 
the app. They found that measurements were higher in 
patients with advanced AMD than in those with inter-
mediate AMD. The app has recently been approved by 
the FDA for use by prescription only. A pilot study was 
recently conducted on a remote monitoring system that 
utilizes the app [60]. The study was a single-arm, pro-
spective, open-label, 16-week, multicenter study and was 
conducted at 24 centers in the US. It demonstrated that 
elderly patients with neovascular AMD were willing and 
able to comply with daily self-testing using the mobile 
device.

SDH shows promise as a monitoring tool as it neces-
sitates only a smartphone, and may, as stated above, dis-
cover advanced stages of the disease on time. However, 
large scale studies regarding the sensitivity and specific-
ity of the method are yet to be published. It is also pos-
sible that patients with advanced stages of the disease 

Fig. 2 The ForeseeHome device: the device uses preferential hypera‑
cuity perimetry for the early detection of CNV lesions
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may have difficulty with recognizing patterns on a small 
phone screen.

Macular mapping test
The macular mapping test (MMT) is designed mainly 
for quick assessment of residual vision in patients with 
maculopathies, but as it yields a quantitative score, it may 
be used as a tool for monitoring disease progression [61]. 
The MMT software displays a constant background pat-
tern resembling a “wagon wheel” throughout the test, 
subtending the central 18° of the visual field. Eight spokes 
point toward the center of the display area, with a goal of 
aiding the patient with maintaining fixation at the center. 
Letters are briefly displayed on the screen and the patient 
is scored based on his ability to detect the letters.

Bartlett et  al. [62] used this test to compare MMT 
scores between 31 healthy eyes of 31 participants, 17 age-
related maculopathy (ARM), and 12 AMD affected eyes. 
They found a significant difference in the score between 
AMD affected eyes and controls (p < 0.001), showing that 
the device could be used as a tool for monitoring pro-
gression of the disease.

While MMT is a simple method for detection of dis-
ease progression, it is not readily available as a home-
based machine, a smartphone app or computer based 
software. Large scale studies are also needed in order to 
prove its efficiency in the detection of CNV.

Noisefield (Entoptic) perimetry
This technique, first introduced by Aulhorn in 1988, [63] 
uses random visual noise patterns. The test involves small 
black and white randomly flickering dots at a high fre-
quency similar to television “static” or “noise”. The patient 
is asked to fixate on a central point and is asked to report 
abnormalities in the background noisefield. They may 
perceive a scotoma as a darker area, lighter area, or area 
of less motion.

Freemen et al. [64] tested this technique using scanning 
laser entoptic perimetry in 91 patients with AMD and 24 
patients without AMD. They found an overall sensitiv-
ity of 82 % and specificity of 100 % for the detection of 
AMD. The sensitivity for early stages of the disease was 
greater than 70 % and increased to above 90 % for moder-
ate to late stages. Koike [65] recently compared noisefield 
perimetry with Amsler grid for the differentiation of the 
dry and wet form of AMD. There was a trend towards 
lower sensitivity for noisefield perimetry (56 %) in com-
parison with Amsler grid (81 %) (p > 0.05). An opposite 
trend for higher specificity for noisefield perimetry (70 
vs. 65 % for Amsler grid, p > 0.05) was shown. The com-
bination of both tools was superior to either tool alone 
in terms of sensitivity, but not specificity, though without 
statistical significance.

Noisefield perimetry has the same disadvantages as 
MMT, not being a readily available tool for frequent 
home-monitoring, and lacking large scale trials to prove 
its usefulness.

Future directions
The methods described above delineate the evolution 
of AMD monitoring, from simple methods such as the 
Amsler grid to sophisticated home-based machines and 
smartphone applications. Yet the field of home monitor-
ing is continually evolving.

Such an evolution may involve OCT machines, cur-
rently only office-based. A new development in OCT 
machinery are swept-source OCT lasers, which are 
more readily portable than SD-OCT systems. This has 
led to the generation of the first prototype handheld 
OCT systems [66]. Another new concept is the field of 
binocular OCT, [67] using swept-source lasers to obtain 
simultaneous images from each eye in tandem, thereby 
removing the need for qualified personnel to acquire 
the image, as the patients align the optical axes of the 
instrument with the optical axes of their own eyes. Such 
machines have the potential of delivering both the sen-
sitivity of OCT examination and the convenience and 
speed of testing at the home setting, and may revo-
lutionize the field of home monitoring of CNV in the 
future.

A smartphone application was previously mentioned 
that uses SDH to monitor AMD patients. Indeed, the 
abundance of smartphones makes these tools a good 
option for always-available monitoring devices. There-
fore, new methods are being developed that make use of 
these machines’ capabilities. A recent example is a pilot 
study by Winther and Frisén conducted on 28 patients 
with neovascular AMD of varying severity, using a 
MultiBit Test (MBT) [68]. It employs segmented digits 
defined by rarebits, or receptive field-size bright dots 
that are briefly presented against a dark background. 
Rarebit testing was devised with the aim of uncover-
ing low degrees of neurovisual damage, where con-
ventional tests often fail. Normal eyes are expected to 
see all rarebit probes, in central and peripheral vision. 
Conversely, eyes with losses of receptive fields will miss 
some probes.

In the study, subjects used a smartphone/tablet appli-
cation. The application generates rarebits, and their num-
ber varies in a cyclic fashion, in preset steps. This test 
presents no fixation demands. Patients were monitored 
for an average of 30  weeks and results were compared 
with the clinical status recorded on clinical examinations. 
Plots of MBT results showed gradual improvement after 
successful antineovascular treatment, while recurrences 
were seen as gradual deteriorations of results.
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Conclusions
The unmet need for early detection of the wet form of 
AMD has led to the development of several promising 
technologies for the detection of CNV. These techniques 
continue to develop and will allow the retina special-
ist to improve patient care. Large-scale studies such as 
the HOME Study validate that early detection of CNV 
can surpass conventional, standard care methods with 
greater sensitivity for identifying early lesions. Advances 
in applications for home use devices to detect CNV show 
promise for improving disease outcomes in patients with 
AMD.
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